
Introducing formal methods
through gamification

Marco Peressotti
University of Southern Denmark

Workshop on CTF & Offensive Security for Risk Management Awareness

Bologna 2025-12-12

Formal Methods is a HUGE umbrella term

• In general, the use of mathematically rigorous techniques in software and
hardware engineering,

• Can assume various forms and levels of rigor

• Broad variety of fundamentals of theoretical computer science:
• Logics, Formal languages/automata theory, Program semantics, Type theory, ...

Occasional mathematical notation
embedded in English specifications

Fully formal specification languages
with a precise semantics

Spectrum of rigorless rigorous more rigorous

Analogy with other
engineering disciplines

• Engineers in traditional disciplines build
mathematical models of their designs

• Use calculations to establish that the design, in the
context of a modelled environment, satisfies its
requirements

• Iterate through phases: model, compute, interpret,
repeat

• Computational solutions (e.g., CFD, FEM)

• Accuracy and faithfulness of the model must be
verifiable (lab tests, prototypes,…)

• Part of certifications

Software is infrastructure: failures, successes, costs, and the case for formal verification.

When is using FM worth the cost?
Adoption is on the rise thanks to

• Light-weight formal methods
(e.g., formal specifications)

• Partial formalisation, focus on critical
components
(e.g., communication libraries)

• More mature tools many with industry
backing
(e.g., Infer, TLA+, UPAAL, etc.)

• Integration with development
environments and DevOps/DevSecOps

The traditional answer

• High-integrity systems
• Safety critical systems (aerospace,

automotive, energy, etc)
• Security critical systems (banking, voting,

etc)
• Mandated by industry standards (IEC61508,

DO-178B)

• Systems where early error detection
saves lots of money (e.g. hardware)

• Systems with unpredictable
environments (e.g., concurrent and
distributed systems such as Cloud, Edge,
IoT)

FM adoption

• Amazon has used FM on 14 large complex
systems.

• In each, FM has added significant value,
• finding subtle bugs we would not have found

by other means.

• giving us enough confidence to make
aggressive optimizations without sacrificing
correctness.

• Amazon has 7 teams using FM

• Engineers at all levels learned FM from
scratch and get useful results in 2-3 weeks.

FM adoption

• Amazon has used FM on 14 large complex
systems.

• In each, FM has added significant value,
• finding subtle bugs we would not have found

by other means.

• giving us enough confidence to make
aggressive optimizations without sacrificing
correctness.

• Amazon has 7 teams using FM

• Engineers at all levels learned FM from
scratch and get useful results in 2-3 weeks.

FM Adoption

• A real-time operating system designed using FM.

• FM found subtle and severe security bugs.

• Developing an abstract model to apply FM had
beneficial impacts beyond just finding bugs:

• The level of abstraction helped in designing a much cleaner
architecture.

• The resulting codebase was 10 times smaller than the
previous version of the OS despite the addition of new
features

• This level of reduction cannot be achieved with simple
refactoring; it requires developing a deeper understanding
of the system, its parts, and their interactions.

TLA+ and Model Checking

System Properties

Model
(State Machine)

Formulas
(Temporal Logic)

enjoys

⊨
𝑮(𝑔𝑟𝑒𝑒𝑛 → 𝑿(𝑦𝑒𝑙𝑙𝑜𝑤 𝑼 𝑟𝑒𝑑))

Example: a traffic light controller
Desired behaviour

State (variables)

• Lights (on/off)

• Timer

Dynamics (actions)

1. If wait then

2. If wait then

3. If wait then

4. If wait then

Implementation (v1)

A B C D

Example: a traffic light controller
Desired behaviour

State (variables)

• Lights (on/off)

• Timer

Dynamics (actions)

1. If wait then

2. If wait then

3. If wait then

4. If wait then

Implementation (v1)

State (variables)

• Lights (on/off)

Model

A B C D

Example: a traffic light controller
Desired behaviour

State (variables)

• Lights (on/off)

• Timer

Dynamics (actions)

1. If wait then

2. If wait then

3. If wait then

4. If wait then

Implementation (v1)

State (variables)

• Lights (on/off)

Model

A

E

B

D

C

G

H

F

A B C D

The values that these variables
can take, define 8 states (the
model does not include time)

Example: a traffic light controller
Desired behaviour

State (variables)

• Lights (on/off)

• Timer

Dynamics (actions)

1. If wait then

2. If wait then

3. If wait then

4. If wait then

Implementation (v1)

State (variables)

• Lights (on/off)

Model

A

E

B

D

C

G

H

F

A B C D

These states
are “legal”,
the system

must remain
in these

The values that these variables
can take, define 8 states (the
model does not include time)

Example: a traffic light controller
Desired behaviour

State (variables)

• Lights (on/off)

• Timer

Dynamics (actions)

1. If wait then

2. If wait then

3. If wait then

4. If wait then

Implementation (v1)

State (variables)

• Lights (on/off)

Model

A

E

B

D

C

G

H

F

A B C D

These states are “illegal”: the
system must never reach any

of them

These states
are “legal”,
the system

must remain
in these

The values that these variables
can take, define 8 states (the
model does not include time)

Example: a traffic light controller
Desired behaviour

State (variables)

• Lights (on/off)

• Timer

Dynamics (actions)

1. If wait then

2. If wait then

3. If wait then

4. If wait then

Implementation (v1)

State (variables)

• Lights (on/off)

Model

A

E

B

D

C

G

H

F

A B C D
Dynamics (actions)

1. If then

2. If then

3. If then

4. If then

Example: a traffic light controller
Desired behaviour

State (variables)

• Lights (on/off)

• Timer

Dynamics (actions)

1. If wait then

2. If wait then

3. If wait then

4. If wait then

Implementation (v1)

State (variables)

• Lights (on/off)

Dynamics (actions)

1. If then

2. If then

3. If then

4. If then

Model

1

11

1

A

E

B

D

C

G

H

F

A B C D

Rule 1: if the red light is on then,
turn the yellow light on.

Rule 1: defines these state
transitions

Example: a traffic light controller
Desired behaviour

State (variables)

• Lights (on/off)

• Timer

Dynamics (actions)

1. If wait then

2. If wait then

3. If wait then

4. If wait then

Implementation (v1)

State (variables)

• Lights (on/off)

Dynamics (actions)

1. If then

2. If then

3. If then

4. If then

Model

1

11

1

4

4

4

4

2

2

3

3

3

A

E

B

D

C

G

H

F

A B C D

Example: a traffic light controller
Desired behaviour

State (variables)

• Lights (on/off)

• Timer

Dynamics (actions)

1. If wait then

2. If wait then

3. If wait then

4. If wait then

Implementation (v1)

State (variables)

• Lights (on/off)

Dynamics (actions)

1. If then

2. If then

3. If then

4. If then

Model

Properties

• Never stay in the same state

• Cannot reach an illegal state

from a legal one

• after

• ….

1

11

1

4

4

4

4

2

2

3

3

3

A

E

B

D

C

G

H

F

A B C D

Properties

• Never stay in the same state

• Cannot reach an illegal state

from a legal one

• after

• ….

Example: a traffic light controller
Desired behaviour

State (variables)

• Lights (on/off)

• Timer

Dynamics (actions)

1. If wait then

2. If wait then

3. If wait then

4. If wait then

Implementation (v1)

State (variables)

• Lights (on/off)

Dynamics (actions)

1. If then

2. If then

3. If then

4. If then

Model

1

11

1

4

4

4

4

2

2

3

3

3

A

E

B

D

C

G

H

F

A B C D

This property does not
hold

Properties

• Never stay in the same state

• Cannot reach an illegal state

from a legal one

• after

• ….

Example: a traffic light controller
Desired behaviour

State (variables)

• Lights (on/off)

• Timer

Dynamics (actions)

1. If wait then

2. If wait then

3. If wait then

4. If wait then

Implementation (v1)

State (variables)

• Lights (on/off)

Dynamics (actions)

1. If then

2. If then

3. If then

4. If then

Model

1

11

1

4

4

4

4

2

2

3

3

3

A

E

B

D

C

G

H

F

A B C D

This property does not
hold

marcoperessotti.com

1. TLC report page
2. Four distinct states were reached during the execution (as expected)
3. States reached by each rule
4. Error message: violation of the temporal property
5. Error trace: the steps that led to the violation
6. TLC was able to apply Rule4 after Rule1 when only Rule2 was

supposed to fire. There is a bug in Rule4

1

2 3

4

5

6

Example: a traffic light controller (fixed)
Desired behaviour

State (variables)

• Lights (on/off)

• Timer

Dynamics (actions)

1. If wait then

2. If wait then

3. If wait then

4. If wait then

Implementation (v2)

State (variables)

• Lights (on/off)

Dynamics (actions)

1. If then

2. If then

3. If then

4. If then

Model

Properties

• Never stay in the same state

• Cannot reach an illegal state

from a legal one

• after

• ….

1

1

4

4

2

2

3

3

3

A

E

B

D

C

G

H

F

A B C D

Fixes

Fixes

Formal Methods belong to CTFs

• Formal methods are not just additional checks or tests, they produce
witnesses, counterexamples, violations, invariants, proof certificates.

• These artefacts can map directly to CTF scoring:
• Find a trace → get a flag.

• Find an invariant → get a flag.

• Show a property holds → get a flag.

• They can be part of offensive and defensive scenarios:
• break the property by producing a violating execution.

• demonstrate that no unsafe state is reachable.

• get help in writing or checking patches

• Course exercises can become CTFs (GameSS Project https://gamess.dk/)

https://gamess.dk/

Example
Find a trace where both processes are in the `critical section` at the same time

The algorithm:
• Shared variables 𝑏1, 𝑏2, 𝑘
• Each process runs the code below
• (𝑖 denotes its id, 𝑗 the other proc)

L1

L2

L3

L4

CS

L1,L1

L1,L2

L1,L3

L1,L4

L2,L4

CS,L4

CS,L2

CS,CS

 Violation
* processes

Procs == {1,2}

(* --algorithm MutEx {

 variables b = [i \in Procs |-> FALSE], k \in Procs;

 process (p \in Procs) {

 L1: while (TRUE) {

 b[self] := TRUE;

 L2: while (k /= self) {

 L3: while (b[k]) { skip; };

 L4: k := self;

 };

 (* critical section*)

 CS: skip;

 (* end critical section*)

 b[self] := FALSE;

 }};

 define {

 MutualExclusion ==

 ~(pc[1] = "CS" /\ pc[2] = "CS")

 }

}

*)
(Hyman algorithm, 1966)

[CTF from GameSS Project]

Example 2
Show whether both processes can access the `critical section` at the same time

The algorithm:
• Shared variables 𝑏1, 𝑏2, 𝑘
• Each process runs the code below
• (𝑖 denotes its id, 𝑗 the other proc)

L1

L2

CS

* processes

Procs == {1,2}

(* --algorithm MutEx {

 variables b = [i \in Procs |-> FALSE], k \in Procs;

 process (p \in Procs) {

 L1: while (TRUE) {

 b[self] := TRUE;

 k := CHOOSE j \in Procs : j /= self;

 L2: while (k /= self /\ b[k]) { skip; };

 (* critical section*)

 CS: skip;

 (* end critical section*)

 b[self] := FALSE;

 }};

 define {

 MutualExclusion ==

 ~(\forall p \in Procs : pc[p] = "CS")

 }

}

*)

 No violation

(Peterson algorithm 1985)

[CTF from GameSS Project]

Takeaways from (mostly offensive) CTFs

1. Tie success to producing a witness
• Flags should only come from a counterexample or proof witness.

2. Witness verification
• Witnesses must be verified
• Keep verification costs under control

3. Keep tasks small
• Assume limited resources (e.g., a laptop)

4. Provide multiple tool paths (in competitions)
• multiple verification tools (model checkers, constraint solvers etc.),
• brute force,
• custom scripts,
• or even manual reasoning.

What about defensive challenges?

• Formal methods can be used to show the absence of bugs

• A limiting factor is that most formal-methods tools produce proofs that are
• too large or too opaque,

• tool-specific and not easily independently validated,

• difficult to re-check on a CTF platform (but can a CTF trust a solver output?).

• Examples in education
• Participants submit formal proofs, temporal properties, invariants etc. and the platform

checks them

• Participants submit the proof certificate from the given tool.

• Example in competitions
• The familiar “patch challenge” designed to make the use of FM advantageous e.g., with

large parameter or state spaces, long chains of activation.

Some sources of inspiration

• RERS Challenge
• Large reactive systems, automatically generated.

• Challenge: proove reachability of an unsafe state (or more complex LTL properties).

• Automatic validation of witnesses.

• SV-COMP Verification Tasks
• Several small programs (usually C or Java).

• Challange: identify issues related to memory safety, termination, concurrency safety.

• Automatic scoring of witnesses.

• VerifyThis
• Very interesting problems and range of tools (often tool independent).

• However, verification is not fully automated

Introducing formal methods
through gamification

Thank you for your attention!

Software is infrastructure:
failures, successes, costs
and the case for formal
verification

The Gamess Project
Material on Gamification
of Cybersecurity
Education

	Slide 1: Introducing formal methods through gamification
	Slide 2: Formal Methods is a HUGE umbrella term
	Slide 3: Analogy with other engineering disciplines
	Slide 5
	Slide 6: When is using FM worth the cost?
	Slide 8: FM adoption
	Slide 9: FM adoption
	Slide 10: FM Adoption
	Slide 12: TLA+ and Model Checking
	Slide 13: Example: a traffic light controller
	Slide 14: Example: a traffic light controller
	Slide 15: Example: a traffic light controller
	Slide 16: Example: a traffic light controller
	Slide 17: Example: a traffic light controller
	Slide 18: Example: a traffic light controller
	Slide 19: Example: a traffic light controller
	Slide 20: Example: a traffic light controller
	Slide 21: Example: a traffic light controller
	Slide 22: Example: a traffic light controller
	Slide 23: Example: a traffic light controller
	Slide 33
	Slide 38: Example: a traffic light controller (fixed)
	Slide 41: Formal Methods belong to CTFs
	Slide 46: Example
	Slide 51: Example 2
	Slide 55: Takeaways from (mostly offensive) CTFs
	Slide 57: What about defensive challenges?
	Slide 58: Some sources of inspiration
	Slide 61: Introducing formal methods through gamification

