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Formal Methods is a HUGE umbrella term

* In general, the use of mathematically rigorous techniques in software and
hardware engineering,

e Can assume various forms and levels of rigor

less rigorous Spectrum of rigor more rigorous
>
Occasional mathematical notation Fully formal specification languages
embedded in English specifications with a precise semantics

* Broad variety of fundamentals of theoretical computer science:
* Logics, Formal languages/automata theory, Program semantics, Type theory, ...



Analogy with other
engineering disciplines

Engineers in traditional disciplines build
mathematical models of their designs

* Use calculations to establish that the design, in the
context of a modelled environment, satisfies its
requirements

* Iterate through phases: model, compute, interpret,
repeat

Computational solutions (e.g., CFD, FEM)

Accuracy and faithfulness of the model must be
verifiable (lab tests, prototypes,...)

Part of certifications



Software is infrastructure: failures, successes, costs, and the case for formal verification.

Case Sector Human Cost Economic Cost iSummary
Therac-25 Healthcare Yes (6 deaths) Unquantified ERadiation therapy software delivered hazardous doses due to
: rrace conditions.
London Ambulance  Healthcare : Yes (20-30 deaths) 1.5 million GBP EAmbulance dispatch system collapsed due to memory leak.
System : :
Sleipner A Platform  Engineering No 700 million USD EModelling error in finite element analysis underestimated
: ‘structural stresses resulting in the loss of the platform.
Patriot Failure Aerospace Yes (28 deaths) Unquantified :Clock drift due to truncation error prevented interception.
Boeing Starliner Aerospace No 410 million USD ESynchrom'sation of spacecraft and launch vehicle clocks
OFT-1 : ‘failed due to logical bug prevented planned orbital insertion.
Boeing 737 MAX Aerospace Yes (346 deaths) 20 billion USD :Crashes due to single point of failure in fly-by-wire system.
Mars Climate Orbiter Aerospace No 327 million USD ELOSS of mission due to unit mismatch (imperial vs. metric)
: ‘in flight control software.
Ariane 5 Flight 501  Aerospace : No 370 million USD iLoss of mission due to float to integer conversion error in
: Eﬁight control software.
Toyota SUA Automotive Yes (89 deaths) 1.2 billion USD ESuspected software contribution to unintended acceleration.
4LM Project Railways  : No 1 billion GBP EComplexity of real-time software hindered development.
Horizon IT Scandal ~ Accounting Indirect (13 suicides) 1 billion GBP (est.)  :Software errors led to 900+ false fraud accusations.
CrowdStrike IT Operationsé No 8 billion USD éUpdate crash led to global business disruptions.
Facebook DNS IT Operations No 150 million USD (est.) EMisconﬁguration caused hours-long global outage.
EternalBlue IT Operations: Indirect 14 billion USD (est.) :Windows use-after-free vulnerability enabled remote code
(WannaCry, NotPetya) : ‘execution. NSA-developed exploit was leaked and used by

‘ransomware and malware campaigns.
Knight Capital Finance No 460 million USD :Error in software operations. One server was not updated.
IRON Finance : No 2 billion USD (est.) EInfrastructure software contributed to market outage.




When is using FM worth the cost?

The traditional answer Adoption is on the rise thanks to
* High-integrity systems * Light-weight formal methods
e Safety critical systems (aerospace, (e.g., formal specifications)

automotive, energy, etc)

L . _ * Partial formalisation, focus on critical
e Security critical systems (banking, voting,

etc) components
 Mandated by industry standards (IEC61508, (e.g., communication libraries)
DO-178B) * More mature tools many with industry
 Systems where early error detection backing
saves lots of money (e.g. hardware) (e.g., Infer, TLA+, UPAAL, etc.)
« Systems with unpredictable * Integration with development
environments (e.g., concurrent and environments and DevOps/DevSecOps

distributed systems such as Cloud, Edge,
loT)



FM adoption

* Amazon has used FM on 14 large complex
systems.

* In each, FM has added significant value,

* finding subtle bugs we would not have found
by other means.

* giving us enough confidence to make
aggressive optimizations without sacrificing
correctness.

* Amazon has 7 teams using FM

* Engineers at all levels learned FM from
scratch and get useful results in 2-3 weeks.

DOI:10.1145/2699417

Engineers use TLA+ to prevent serious but
subtle bugs from reaching production.

BY CHRIS NEWCOMBE, TIM RATH, FAN ZHANG, BOGDAN MUNTEANU,
MARC BROOKER, AND MICHAEL DEARDEUFF

How Amazon
Web Services

Uses Formal
Methods

SINCE 2011, ENGINEERS at Amazon Web Services
(AWS) have used formal specification and model
checking to help solve difficult design problems in
critical systems. Here, we describe our motivation
and experience, what has worked well in our problem
domain, and what has not. When discussing personal
experience we refer to the authors by their initials.

At AWS we strive to build services that are simple for
customers to use. External simplicity is built on a hidden
substrate of complex distributed systems. Such complex
internals are required to achieve high availability while
running on cost-efficient infrastructure and cope
with relentless business growth. As an example of this
growth, in 2006, AWS launched S3, its Simple Storage
Service. In the following six years, S3 grew to store one
trillion objects.? Less than a year later it had grown
to two trillion objects and was regularly handling 1.1
million requests per second.*

S3 is just one of many AWS ser-
vices that store and process data our
customers have entrusted to us. To
safeguard that data, the core of each
service relies on fault-tolerant dis-
tributed algorithms for replication,
consistency, concurrency control, au-
to-scaling, load balancing, and other
coordination tasks. There are many
such algorithms in the literature, but
combining them into a cohesive sys-
tem is a challenge, as the algorithms
must usually be modified to interact
properly in a real-world system. In
addition, we have found it necessary
to invent algorithms of our own. We
work hard to avoid unnecessary com-
plexity, but the essential complexity of
the task remains high.

Complexity increases the probabil-
ity of human error in design, code,
and operations. Errors in the core of
the system could cause loss or corrup-
tion of data, or violate other interface
contracts on which our customers de-
pend. So, before launching a service,
we need to reach extremely high con-
fidence that the core of the system is
correct. We have found the standard
verification techniques in industry are
necessary but not sufficient. We rou-
tinely use deep design reviews, code
reviews, static code analysis, stress
testing, and fault-injection testing but
still find that subtle bugs can hide in
complex concurrent fault-tolerant
systems, One reason they do is that
human intuition is poor at estimating
the true probability of supposedly “ex-
tremely rare” combinations of events
in systems operating at a scale of mil-
lions of requests per second.

key insights

= Formal methods find bugs in system
designs that cannot be found through
any other technique we know of.

B Formal methods are surprisingly feasible
for mainstream software development
and give good return on investment.

m At Amazon, formal methods are routinely
applied to the design of complex
real-world software, including public
cloud services.



FM adoption
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Applying TLA+ to some of Amazon’s more complex systems.
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Benefit

S3

Fault-tolerant, low-level
network algorithm

804 PlusCal

Found two bugs, then
others in proposed
optimizations

Background redistribution of
data

645 PlusCal

Found one bug, then
another in the first
proposed fix

DynamoDB

Replication and
group-membership system

939 TLA+

Found three bugs requir-
ing traces of up to 35
steps

EBS

Volume management

102 PlusCal

Found three bugs

Internal
distributed
lock
manager

Lock-free data structure

223 PlusCal

Improved confidence
though failed to find a
liveness bug, as liveness
not checked

Fault-tolerant replication-and-

reconfiguration algorithm

318 TLA+

Found one bug and
verified an aggressive
optimization
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S3 is just one of many AWS ser-
vices that store and process data our
customers have entrusted to us. To
safeguard that data, the core of each
service relies on fault-tolerant dis-
tributed algorithms for replication,
consistency, concurrency control, au-
to-scaling, load balancing, and other
coordination tasks. There are many
such algorithms in the literature, but
combining them into a cohesive sys-
tem is a challenge, as the algorithms
must usually be modified to interact
properly in a real-world system. In
addition, we have found it necessary
to invent algorithms of our own. We
work hard to avoid unnecessary com-
plexity, but the essential complexity of
the task remains high.

Complexity increases the probabil-
ity of human error in design, code,
and operations. Errors in the core of
the system could cause loss or corrup-
tion of data, or violate other interface
contracts on which our customers de-
pend. So, before launching a service,
we need to reach extremely high con-
fidence that the core of the system is
correct. We have found the standard
verification techniques in industry are
necessary but not sufficient. We rou-
tinely use deep design reviews, code
reviews, static code analysis, stress
testing, and fault-injection testing but
still find that subtle bugs can hide in
complex concurrent fault-tolerant
systems, One reason they do is that
human intuition is poor at estimating
the true probability of supposedly “ex-
tremely rare” combinations of events
in systems operating at a scale of mil-
lions of requests per second.

key insights

= Formal methods find bugs in system
designs that cannot be found through
any other technique we know of.

® Formal methods are surprisingly feasible
for mainstream software development
and give good return on investment.

m At Amazon, formal methods are routinely
applied to the design of complex
real-world software, including public
cloud services.



FM Adoption

* A real-time operating system designed using FM.
 FM found subtle and severe security bugs.

* Developing an abstract model to apply FM had
beneficial impacts beyond just finding bugs:

* The level of abstraction helped in designing a much cleaner
architecture.

* The resulting codebase was 10 times smaller than the
previous version of the OS despite the addition of new
features

* This level of reduction cannot be achieved with simple
refactoring; it requires developing a deeper understanding
of the system, its parts, and their interactions.

' Eric Verhulst - Raymond T. Boute

José Miguel Sampaio Faria

Formal
Development of a

Network-Centric
RTOS

Software Engineering for Reliable
Embedded Systems
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TLA+ and Model Checking
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Example: a traffic light controller

Desired behaviour
!
(B)
% |

Implementation (v1)

State (variables)
Lights @ ) @ (on/off)
e Timer

Dynamics (actions)

1. If @ wait (D then ()

2. 1@ wait® then @@ ©
3. If O wait® then L@
4. 1f L wait® then @ @



Example: a traffic light controller

Desired behaviour Model

State (variables)
—f[ ]— — - Lights @ () @ (on/off)
t 2 |

Implementation (v1)

State (variables)
Lights @ ) @ (on/off)
Timer O

Dynamics (actions)
1. f @ wait (D then ()
2. 1@ wait® then @@ ©

3. If O wait® then L@
4. 1f L wait® then @ @



Example: a traffic light controller

p
Desired behaviour

A &)

]

: Implementation (v1)

State (variables)

« Lights @ @ (on/off)
e Timer

Dynamics (actions)

1. If @ wait (D then ()
2. @ wait® then @@
3. If O wait O then LG
4. f 0 wait® then @@

~

‘Model

State (variables)
- Lights @ @ (on/off)

A

The values that these variables

can take, define 8 states (the
model does not include time)
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Example: a trafﬂc light controller

DeS|red behaviour Model
State (variables)
- Lights @ () @ (on/off)
A
" Implementation (v1) | el
P The values that these variables are “legal”,
State (variables) can take, define 8 states (the the system pggm< .
« Lights ® 0 (on/off) model does not include time) must remain

. Timer @ in these

Dynamics (actions)

1. If @ wait (O then ()
2. 1@ wait®then @@ QO
3. If O wait O then LG
4. f 0 wait® then @@




Example: a trafﬂc light controller

De3|red behaviour rModeI

State (variables)
- Lights @ () @ (on/off)
4&
" Im lementation (v1) ) TRESESIates
P The values that these variables are “legal”,
State (variables) can take, define 8 states (the the system
« Lights @ @ (on/off) model does not include time) must remain
. Time @ in these
'mer These states are “illegal”: the
Dynamics (actions) system must never reach any

1. @  wait®then ()  —
2. f@ wait(®then @@ ©
3. If O wait O then LG
4. 1f W  wait® then @@

am




Example: a traffic light controller

Desired behaviour Model

State (variables)
—f[ ]— — - Lights @ () @ (on/off)
t 2 |

Dynamics (actions)

1. If @ then <
2. f@) then @OV
3. |If &’ then @
4. If & then @@

Implementation (v1)

State (variables)
Lights @ ) @ (on/off)
Timer O

Dynamics (actions)

1. If @ wait (D then ()

2. 1@ wait® then @@ ©
3. If O wait O then L@
4. 1f L wait® then @ @
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Example: a trafﬂc light controller

DeS|red behaviour

1988

Implementation (v1)

State (variables)

 Lights @ @ (on/off)
e Timer

Dynamics (actions)
1. f @ wait (D then ()

2. 1@ wait®then @@ QO
3. If O wait ®© then L@
4

if O wait© then @ @

‘Model

State (variables)
- Lights @ () @ (on/off)

Dynamics (actions)
1/ 1f @ then L <
@ then @OV

3. If @ then L0
4. If W then @@

Rule 1: if the red light is on then,
turn the yellow light on.

Rule 1: defines these state

transitions




Example: a traffic light controller

Desired behaviour Model

State (variables)
—f[ ]— — - Lights @ () @ (on/off)
t 2 |

Dynamics (actions)

1. If @ then <
Implementation (v1) 2. T@ then @OV
3. If W) then @
4. If L  then @@

State (variables)
Lights @ ) @ (on/off)
e Timer

Dynamics (actions)

1. If @ wait (D then ()

2. 1@ wait® then @@ ©
3. If O wait O then L@
4. 1f L wait® then @ @




Example: a traffic light controller

Desired behaviour Model

State (variables)
—f[ ]— — - Lights @ () @ (on/off)
t 2 |

Dynamics (actions)

1. If @ then <
Implementation (v1) 2. T@ then @OV
3. If W) then @
4. If L  then @@

State (variables)
Lights @ () @ (on/off)

Timer Properties

Never stay in the same state
Dynamics (actions) « Cannot reach an illegal state
1. If @ wait (D then () from a legal one

2. F@L wait® then @@ O - O after @
3. If @O wait ©O then L@ .
4. 1f L wait® then @ @




Example: a traffic light controller

Desired behaviour Model

State (variables)
—f[ ]— — « Lights @ ) @ (on/off)
t 2 |

Dynamics (actions)

1. If @ then ()
Implementation (v1) 2. T@ then @OV
3. If W) then @
4. If L  then @@

State (variables)
Lights @ () @ (on/off)

Timer (O Properties

/\ Never stay in the same state
Dynamics (actions) Cannot reach an illegal state
1. f @ wait (D then () from a legal one

2. F@L wait® then @@ O A © after @
3. If O wait O then L@ .
4. 1f L wait® then @ @




Example: a traffic light controller

Desired behaviour
!
(B)
% |

Implementation (v1)

State (variables)
Lights @ ) @ (on/off)
Timer O

Dynamics (actions)

1. If @ wait (D then ()
2. F@L wait® then @@ O
3. If O wait O then L@
4. If ) wait® then @ @

Model

State (variables)
Lights @ () @ (on/off)

Dynamics (actions)

1. If @ then <
2. f@) then @OV
3. |If &’ then @
4. If & then @@

Properties
/\ Never stay in the same state

Cannot reach an illegal state
from a legal one

A\ @ after @
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Example: a traffic light controller

Desired behaviour Model

State (variables)
—f[ ]— — - Lights @ () @ (on/off)
t 2 |

Dynamicsl(actions)
1. f @ then )
@ then @O®©

2.
| 3. If @O then WO
State (variables) 4

_ @ then @@
« Lights @ @ (on/off) £
. Timer © Properties
Never stay in the same state

Dynamicsl(actions) Cannot reach an illegal state
1. f @@ wait ® then from a legal one

w)
2. @ wait® then @@ © © after @
3. If O wait ® then] L@ . ..
4. 1@ wait O then| @ @

T

Implementation (v2)




Formal Methods belong to CTFs

* Formal methods are not just additional checks or tests, they produce
witnesses, counterexamples, violations, invariants, proof certificates.

* These artefacts can map directly to CTF scoring:
* Find a trace - get a flag.
* Find an invariant - get a flag.
* Show a property holds - get a flag.

* They can be part of offensive and defensive scenarios:
* break the property by producing a violating execution.
 demonstrate that no unsafe state is reachable.

* get help in writing or checking patches

* Course exercises can become CTFs (GameSS Project https://gamess.dk/ )



https://gamess.dk/

Example

[CTF from GameSS Project]

Find a trace where both processes are in the critical section at the same time

Vs

The algorithm:
e Shared variables by, by, k
* Each process runs the code below

(i denotes its id, j the other proc)

1,1 while true do

-

begin
‘noncritical section’;
b; := true;
L2 while £ # j do begin
1.3 while b; do skip;
L4 k:=1
end;
(of3] ‘critical section’;
b; := false;
end

(Hyman algorithm, 1966)

~N

-

\* processes
Procs == {1,2}

(* ——algorithm MutEx {

variables b =

[1 \in Procs |-> FALSE],

process (p \in
Ll: while

b[self]

L2:

L3:

while

Procs) {

(TRUE) |

:= TRUE;
(k /= self) {

while (b[k]) { skip; };
L4: k := self;
}i
(* critical section?*)
CS: skip;
(* end critical section*)
b[self] := FALSE;
1B
define {
MutualExclusion ==

"’(pC[l] — "CS" /\ pC[Z] — "CS")

k \in Procs;

~

/\ Violation

Er




Example 2

[CTF from GameSS Project]

Show whether both processes can access the critical section” at the same time

The algorithm:

* Shared variables by, by, k

* Each process runs the code below
* (i denotesitsid, j the other proc)

1,1 While true do

begin
‘noncritical section’;
b; := true;
k:=j;
L2 while (b; and £ = j) do skip;
CS ‘critical section’;
b; := false;

end

(Peterson algorithm 1985)

\* processes
Procs == {1,2}

(* ——algorithm MutEx {

variables b = [1 \i1n Procs |-> FALSE], k \in Procs;

process (p \in Procs) {
Ll: while (TRUE) {
b[self] := TRUE;
k := CHOOSE j \in Procs : J /= self;
L2: while (k /= self /\ blk]) { skip;
(* critical section?¥*)

CS: skip;
(* end critical section*)
b[self] := FALSE;
1B
define {
MutualExclusion ==
~(\forall p \in Procs : pc[p] = "CS")

}i

No violation




Takeaways from (mostly offensive) CTFs

1. Tie success to producing a witness
* Flags should only come from a counterexample or proof witness.

2. Witness verification
 Witnesses must be verified
* Keep verification costs under control

3. Keep tasks small
e Assume limited resources (e.g., a laptop)

4. Provide multiple tool paths (in competitions)
* multiple verification tools (model checkers, constraint solvers etc.),
* brute force,
* custom scripts,
e or even manual reasoning.



What about defensive challenges?

* Formal methods can be used to show the absence of bugs

* A limiting factor is that most formal-methods tools produce proofs that are

* too large or too opaque,
 tool-specific and not easily independently validated,
e difficult to re-check on a CTF platform (but can a CTF trust a solver output?).

 Examples in education

* Participants submit formal proofs, temporal properties, invariants etc. and the platform
checks them

 Participants submit the proof certificate from the given tool.

 Example in competitions

* The familiar “patch challenge” designed to make the use of FM advantageous e.g., with
large parameter or state spaces, long chains of activation.



Some sources of inspiration

* RERS Challenge
* Large reactive systems, automatically generated.
e Challenge: proove reachability of an unsafe state (or more complex LTL properties).
e Automatic validation of witnesses.

e SV-COMP Verification Tasks
e Several small programs (usually C or Java).
* Challange: identify issues related to memory safety, termination, concurrency safety.
e Automatic scoring of witnesses.

* VerifyThis
* Very interesting problems and range of tools (often tool independent).
* However, verification is not fully automated



Introducing formal methods
through gamification

Thank you for your attention!

- 1
E -y E Software is infrastructure: E E

The Gamess Project

|'§:| K failures, successes, costs ="F Material on Gamification
- :!E' and the case for formal of Cybersecurity
" l|_ verification E Education
'| 115 Ty
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